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Abstract-The integral method is applied to study the effects of the natural convection on the melting of a 
solid around a hot horizontal cylinder. The results demonstrate that the melting process is affected by the 
following five dimensionless parameters: subcooling; Rayleigb, Stefan and Prandtl numbers; and the ratio 
of thermal diffusivities. Their effects are quantitatively assessed. The integral solution shows surprising 

accuracy when it is compared with the quasi-steady solution when Stefan number is small. 

NOMENCLATURE 

radius of the hot cylinder ; 
gap function, equation (3f); 
stream function ; 
gravitation acceleration ; 
Prandtl number; 
heat flux along the interface of two phases; 
radial coordinate ; 
contour of the melted region ; 
Rayleigb number ; 
Ra[(2t’ :2)B] 3 ; 
stream function parameter, equation (24); 
subcooling factor, equation (l&z) ; 
Stefan number, equation (lob); 
temperature ; 
dimensionless temperature, equations (3a); 
kinematic viscosity ; 
thermal diffusivity; 
thermal expansion coefficient ; 
time-dependent amplitude of stream func- 
tion, equation (24); 
azimuthal coordinate; 
density. 

Superscripts 

, dimensional quantity; 
, 
, derivative with respect to I/J; 

-3 derivative with respect to time. 

Subscripts 
1, hot cylinder ; 
1, melted solid ; 
m, melting front; 

s, solid ; 
Numbers indicate the expansion order. 

INTRODUCTION 

EFFECTIVE usage of waste heat requires the develop- 
ment of thermal storage systems. Utilization of latent 
heat during the process of changing phase is one of the 
viabte concepts. Traditionally, convective heat transfer 
was rarely considered to be important in phase- 

change processes. Recently, experimental studies [ 1,2] 
have shown that natural convection can have sub- 
stantial influence on the phase-change process around 
a heated horizontal cylinder. 

Intuitively, one can imagine that heat conduction is 
the dominant heat transfer mode within a short period 

after the melting starts. Yao and Chen [3] showed 
that the magnitude of natural convection increases 

as the melted region grows and the governing para- 
meter is the Rayleigh number evaluated on the typical 
distance between the inner hot cylinder and the 
interface of two phases, Quasi-steady approximation 
has been used to develop the series solution by treating 
the effect of natural convection as a perturbation 
quantity. In their solution, they have assumed that the 
solid is held at its melting temperature. Thus, no beat 
transfer inside the solid bed has been considered. 

Maintaining the solid bed at its melting temperature 
without changing its phase is a difficult task in the 
laboratory. If a few degrees of subcooling in the solid 
bed exist in the experimental studies of the phase- 
change problems, the subcoolingeffect has to be taken 
into acount in order to accurately interpret experi- 
mental data. 

In this paper, we study the subcooling effect on the 
phase-change process around a heated horizontal 
cylinder. We concentrate on the short-time solution so 
that the natural convection can be treated as a 
perturbation quantity. This allows us to separate the 
azimuthal dependence of the eccentric shape of the 
melted region and to simplify the analysis, 

The detailed mathematical model and the coor- 
dinate transformation which immobilizes the interface 
of the two phases and removes the singularity at the 
be~nning of the melting process are given in the next 
section. The regular perturbation solution is de- 
veloped in the third section. The corresponding 
approximate integral formulation and the numerical 
procedure to integrate the final ordinary differential 
equations are described in the fourth section. In the 

fifth section. the numerical results are presented and 
discussed. 
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.MATHEMATICAL FORMULATION I 

The physical model considered is an infinitely long 
circular cylinder of radius u horizontally embedded in 
an infinite solid. Fig. 1. Initially, T, is held below 7,. 
The position of the melting front is denoted by R(tji, t). 
Conduction is dominant at the beginning of the 
melting process. As the melted region increases, the 
effect of natural convection gradually appears, and 
disturbs the temperature distribution. The melted 
region forms an eccentric annulus. The importance of 
the natural ~orlvectiot~ depends on the Rayleigh 
number which increases as the third power of the gap 

of the melted region. Hence, the convection heat 
transfer eventually becomes the dominant mode. 

Solid 

-6s <J-m 

Mrlteci solid 
In this paper we consider the short-time solution 

which is valid before the convection becomes the 
dominant mode. The formulation is, however, valid for 
general phase-change problems in cylindrical coor- 
dinates. The variation ofdensity through phasechange 
is not considered; however, the buoyancy forces in- 
duced by the density strati~cation is included. This is 
known as the Boussinesq approximation. 

The governing equations for the region of melted 
solid in cylindrical polar coordinates are: 

?(I%) ~_-+.!?!-.O 
ir (“$ 

(7ii hi _ ^- 1’ cu Is2 

FIG. 1. Physical model and coordinates. 

1~ = lJ/(a,/a), 0 = f7/(a,/a), (velocities) (3al 

p = li:‘(p*a,2ia2 ), (pressure) (3bf 

(I, = (T - T,J/(r, - T,). (temperatures (3c) 

t = #a2/a,), (time) (361 

r = (I; - u)/[a{Zr)” ‘E($,f)], 
(radial coordinate) 

(la) B($, t) = [R(ljL t) - a]/[a(Zt)’ ‘1, 
(melting front) 

Ru = PsV, - 7-,,,)a3/(~~v), 
(Rayleigh no.) 

Pr = cI&‘, (Prandtl no.) 

OL,~ = aJcrl, (ratio of thermal di~usivities). 

13e) 

(30 

(3g) 

(3h) 

(39 
(lb1 Substitution of equations (3) into equations (1) 

gives : 

+?r,{[r, + l/((2t)‘,z B)] Ui + ?LL‘Ii$ 

= (r,B’/B)Sc/Sr,; (4a) 

r&v 

I 

au --- 
B[r, -t- 1/((2t)’ 2B)] ‘r, 

(Id) 
1 ?p 

= The boundary conditions associated with equation 
-~-- Ra@cos$ 

(2t)’ 2 B &, 

(1) are : 1 d 
t2 0, 

-- 
(2t)BZ[r, + 1/((2t)B’*‘B)] 5j 

T=Ti and r7=i;=O atP=u; (2a) 

T= T, and ti=1’=0 atr=R($,Q (2b) 

The following dimensionless variables are intro- 
duced to non-dimensionalize equations (1). They are : 
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rB a 

+ (2t) B3[r, + 1/((2t)1’2 B)] F 

x 
d”+ 
at+, [rl + l!(tt)l/is)] 

u - A(218 + B) 
(2t) 

r,Blv ia0 

- B[r, + 1;((2t)’ 2)B]jir, 

+ [(2t)‘!‘B][r, 1 1/((2t)“‘B)] $ ” [ 11 

-1 ap 

= [(2t)“‘B][r, + 1/((2t)“2B)] a$ 
i a 

+ Raesin+ + ~- 
(2t)B2 dr, 

!!+ 1 

’ Jr, rl + [l/((2t)L’ZB)] 

83, 1 

It + (2t)’ 2 B 
u-&+(2rB+B) 

r, B’o 

I 

w 
- (2t)1:2B[r, + 1/((2t)‘:‘B)] ar, 

0 a4 
+ (2t)i “B[r, + 1/((2t)1:2B)] at,h 

1 PO, 1 80, 
2tB2 ar:+[ r, + 1/((2t)1:2B)] ?r, 

1 

’ [rl + 1/((2t)1’2B)]2 

The boundary conditions (2) become : 

t20, 

0, = 1 and u = v=O at r,=O, 

0, =0 and u = u=O at rl= 1. 

worth pointing out the convection effects induced 

by the moving boundary is included in the 
formulation. 

The singularity of the equations for the phase- 
change problem at t = 0 has been recognized for a long 
time. Neumann in 1912 and Stefan in 1891 [6] solved 

(4b) the phase-change problem of a semi-infinite solid in 
terms of a similarity variable, the ratio of the distance 
from the interface at zero time to the square root of 
time. In other words, the melting front propagates 

proportional to t’ 2. 
For a cylindrical geometry, the gap between the 

inner cylinder and the interface is small compared with 
the radius of the inner cylinder within a short while 

after the melting starts. Thus, the effect of transverse 
curvature is negligible. Therefore, Neumann’s solution 
is also applicable to the cylindrical geometry at the 

beginning of the melting. This is why the radial 
coordinate is scaled by the square root of time [see 

equation (3f)]. 

Solid bed 
The dimensionless unsteady conduction equation 

for the solid bed is 

(2r)% - (2tL? + rs + B)$ 
(4c) s 

a2 
s+ 

(2t)“Z d 
= %I 

s (2t)’ “B + rs + 1 dr,V 

+ [(2t)’ ‘BT r, + 11’ 2; 
[- - B.$)i]O, (6) 

where CI,, is the ratio of thermal diffusivities of the solid 
to the liquid. 

The associated dimensionless variables are : 

0, = (T- T,)/(T, - T,), (temperature) (7a) 

rr = (F - R(II/, o/[a(2t)“‘]. 

(radial coordinate). (75) 

Scaling the radial coordinate of the solid bed by 
(4d) (2t)r ‘2 has the advantage that it reduces the ever 

increasing thermal penetration depth in the solid ; also, 
it removes the singularity at t = 0. 

The required boundary conditions are 

(5a) 

(5b) 

t<o, Q,= -1, (no melted region) @a) 

tr0, H,=O atr,=O, (gb) 

8,+ - 1 as r,A x. (gc) 

The choice of the dimensionless radial coordinate 
has two purposes: (1) to transform the melted region Interface 

into a unit circle and (2) to remove the singularity at The equation governing the location of the melting 

t = 0. A similar transformation has been used to study front can be obtained by taking an energy balance 

the natural convection in the melted region in the along the interface of the melted region and the solid 

neighborhood of a heated vertical cylinder [4] and to bed. In the dimensionless form, it is: 

study the melting of a subcooled solid around a heated 
circular cylinder due to the heat conduction [5]. It is (- l/B){[l + (rB”)/[B(r, + 1/LYQ2]), g 

I 
HMT 24: 12 - n 



Where 

tW 

(Stefan Number) (fob) 

(subcooting factor). (1Oc) 

Due to the complexity of the governing equations, it 
is unlikely to solve them in a closed form. Numerical 
method may be the only choice if one is interested in 
the Eong-time solution. Partial ~mmobil~~tion of the 
penetration depth and transfo~atio~ of the asym- 
metric melted region into a circle can substantially 
simplify the numerical computation. 

In this paper, we concentrate on the short-time 
solution where the natural convection can be treated 
as a perturbed effect. The series of the regular per- 
turbation solution is developed in the next section. The 
approximate integral solutions are then described in 
the fourth section. 

Rayleigh number defined in equation f3g) is based 
on the radius of the inner cylinder. Equations (4b, c) 
can be rearranged to show that the buoyancy forces 
are proportional to Ra, = [(2t)“2 BJJRa. This shows 
that the importance of the natural convection rapidly 
increases with the size of the melted region. However, 
at the beginning of the melting process, most energy is 
transferred by conduction. Within a short period after 
the melting starts, the effect ofnatural convection can 
be treated as the perturbed quantities. The short-time 
solutior~ is obtained by the regular ~rturbatjon 
method in the paper. 

The convenient expansion parameter is Ra. How- 
ever, the sotution is not limited by the value of Ra but 
is only valid for smalf Ra, i.e. short-time solution. 

Melted solid 
For the melted region, the dependent variables can 

be expanded as 

L. s. Yao and w. fIL4ERNEY 

wheref is the stream function and is related to the 
velocities as : 

and 

After e~mination of p between equations {4b, c) and 
replacing u and u by f, then substjtut~on of equations 
(I 1) intoequat~ons (4) and collection ofequal order Ra 
terms gives : 

(Ra’): (2c)B; 

=!%!Q_ 1 s. 
ar: ri + 1/[(2t)‘~zB,j &, ’ 

(13) 

x F-2 + 1/[(2t)‘!%,1 

U4bl 

1 

- [r, + 1/((2t)“230)]2 ’ U4c) 

Equation (13) shows that the leading term of the 
energy transfer in the melted region is the conduction 
mode. The second term of equation (13) represents the 
effect induced by the moving boundary which is similar 
to the convection effect along the radial direction. The 
terms on the riot-hand side of equation (I 3) represent 
heat diffusion, 
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Similar interpretation can be given to equation 
(14a). The term multiplied byf, is the contribution due 
to the natural convection equation (14b) which de- 
scribes the fluid flow due to buoyancy forces. 

Solid bed 
The temperature distribution in the solid bed can be 

expanded as : 

Qs = O,,O(ro t) + Ra cos I@,, l(rs t) + . . . (14d) 

The equations governing 0,‘s can be obtained by 
substituting equation (14d) into equation (6). They are 

do%, 
(Ra’): (2t)-- - 

?O,., 
c’t 

[r, + B, + 2tB,] T 
s 

d2%0 de 
-+ = ad &,z rs + B, : l/(2t)1’2 3:: ’ 

~ (15a) 

30,. , 
(Ra): (2r)$ - (r, + B, + 2t&JY 

s 

ak., 

where 

- (2tB, + B,)F = TV:%,,; (15b) 
5 

v;=ilZ+ 1 d 

arf rs + B, + 1/(2t)“’ dr, 

1 

- [r, + B, + 1/(2t)L’2]2 ’ 
(15c) 

Interface 
The equations governing the location of the melting 

front are: 

ak,, 
(Ra’): (2t)B, + B, = S,Sbd 

rs r.=O 

1 w., 
B, &, ‘=l 

; (164 

at1 (Ra): (2t)B, + B, = S&,7 
s I, =o 

The associated boundary conditions can be ob- 
tained straightforwardly by substitution of the expan- 
sion series into equations (5) and (8) and collection of 
equal-order terms of Ra. They are listed below : 

(i) Melted solid: 

At rl = 0 0r.o = 1, Br.l =fI =f*,,, = 0,(17a) 

At r, = 1 0 1.0 = 81.1 =f1 =s1.,, = 0. (17b) 

(ii) Solid bed: 

At rs = 0 f3s,o = 0,. 1 = 0, (184 

At r s + % e s.. + - 1, kI + 0. (18b) 

Solid bed 

INTEGRAL FORMULATION 

The temperature distribution in the solid bed is 
assumed as a Znd-order polynomial. The parameter 
that governs the heat transfer rate is the heat pene- 
tration depth, 6. For the short-time solution, the 
penetration depth can also be expanded as 

6 = d,(t) + Ra cos~,M,(t) + . (19) 

The assumed temperature distributions which satisfy 
the boundary conditions (18) are 

es.o = - 2(r,/6,) + (rib,)‘, (20a) 

es., = 2(~,/~o)[(rJ~o) - b-d~o)21. (20b) 
The governing equations for 6, and 6, can be obtained 
by substituting equations (20) into equations (15) and 
then integrating them from r, = 0 to rs = 6. They are 

(&,t)& + (6;/2) + (3/2hWt& + 4,) 

= asi 6 + [3/6,(2t)’ ‘][l + (6, + B,)] 

x (2t)’ ‘In 
1 + B,(2r)“’ 

1 + (6, + B,)(2t)’ ’ 
(21a) 

and 

1 2ShS, ;b,+j+6’ 
0 

+ a,,$a, 
0 

$%-g]. (21b) 

Melted solid 
The temperature distribution in the region of melted 

solid is expressed in terms of the heat flux, 4, along the 
interface of two phases. For the short-time solution, 4 
can be expanded as 

4 = qO(t) + Ra cos $ql(t) + (22) 

The assumed temperature profiles which satisfy the 
boundary conditions are 

o,., = 1 - (2 - qO)r, + (1 - qO)r: (23a) 

and 

k = 4,(r, - r?). (23b) 

The stream function fI is assumed as 

fI = &(t)[(rf - 2r: + rf) - s(rf’ - 2rf + r:)] (24) 

which satisfies the no-slip condition on the solid walls. 
The method of se!-cting s will be discussed in the 
Results and DiscussIon section. 

Substitution of equation (24) into equations (13) 
and (14) ar +I then integration from r, = 0 to rl = 1 
yield. 

(2tB;)4, + (2 + q,)(B; + 2tB,B,) 

= 24(1 - qo) - 6(2 - qo) + (2 - 2qo)/[(2t)1~2Bo] 

x ln[l + (2t)“‘B,], (25) 

b(t) = C2/[24 - (4C2/l + C) + 2/PrB, 
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001 I I I 
0 1 2 3 4 5 

Sd ~ _--___) 

FIG. 2. Comparison of the integral solution with Neumann 
solution at f = 0 and a,, = 1. 

x (2& + B,)] - S[12 + (4C/l + C) 

+(2/J’W,(2&, + &,)I, (26) 

and 

Cz& + (12 + B; + 2tB&,)q, 

= (2t)’ ‘(2 + q,J(I.$,B, - B&)/B, 

+ MC, - SC,) - B,/B,){W - qo) 

- 6ln(l + C) 

x [(2 - 40) + (2 - 2%)/C]) 

where 

(27a) 

C, = (C/15)(1 - qo) - [C(2 - 40) + (2 - 2&l)] 

x [(l/12 - 1.13C - 3/2C2 - 1/C3) 

+ (l/C2 + 2/C3 + 1/C4)ln(l + C)], (27b) 

c, = (C/30)(1 - qo) - [C(2 - 40) + (2 + &hJ)l 
x [(l/30 - 1/12C + l,i3C2 + 3/2C3 + l/C”) 

- (I/C3 + 2/C4 + l/P)ln(l + C)], (27~) 

C=2rxB,. (274 

Interface 

Substitution of equations (20) and (24) into equa- 
tions (16) and taking the appropriate limit result 

(2W$, + B, = Uq,P, - 2&/&J (28a) 

and 

(2#, + B, 

16 

14 

._ 12 

------_ 
\ . 

--..__ --_- ------ 

oo 

05 r 

i 8 
005 - 

00 05 10 15 20 

t- 

FIG. 3.(a) S&cooling effects (zeroth-order solutions at S, = 1, 
rs, = 1); (b) subcooling effects (lst-order solutions at Pr = 1, 

I _ . = S,[q,lB, - q,B,jBi + 28,6,/6;]. (28b) 3, = 1, a,, = 1) 
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Numerical integration and initial conditions 
Radial-coordinate transformations (3e, f) and (17b) 

remove the singularity at t = 0. The required initial 

conditions to start integrating equations (21), (22), 
(29, (26b), and (28a, b) can be obtained from these 

equations by taking the limit that t -+ 0. They are 

qJ0) = (12 - 2&$/(12 + B;) (294 

O(Ra’) = 
6,(O) = (2.25B; + 64 ‘,’ - l.SE, (29b) 

B,(O) = S,{(12 - 2B;)/(12Bo + B$ 

and 

- 2Sb/[2.25B; + 6~(,,)‘!~ 

- lSB,] (29~) 

1 

Cp=o (30a) 

q, = - 12B,(l - qo)/(12Bo + B:) (30b) 

o(Ra) = 6, = 6~B,/[6,Bo - 6:/3 - 4a,,(l + So)] 

(3Oc) 

B, = X,(q,IBo + 2kW~)/(l + &IO/%). 

(304 

Equations (29) are non-linear. The value of qo(0) 
and 6,(O) can be determined after obtaining B, from 

equation (29~) by iterations. The procedure is 
straightforward and obvious ; therefore, we do not 
describe it here. It is worth pointing out that equations 
(29) are the approximate integral solution of the 

Neumann problem. The Neumann solution in the 
transformed coordinates are listed below in order to 
determine the accuracy of the integral solution. 

The Neumann solution is 

B, = S,(2/n)‘:’ {e-B~~2/erf(Bo/21~2) 

- [S,/(ai,!*)e- B~i(2a~J]/ [ 1 - erf(B,/(2a,,)’ “)2]} 

(31a) 

and 

q. = (BO/~1~Z)e-B~~2/erf(Bo/2L~2) (31b) 

where erf stands for the error function. 

Equations (29a, c) are compared with equations (3 1) 
for a,, = 1 and various values of S, and S,. The results 
are given in Fig. 2. 

The initial values of B,, the zeroth-order gap 
function, are plotted as the function of the Stefan 
number, S,, for different degrees of subcooling in 
Fig. 3a. The error of the integral solution at t = 0 is 

bounded by 5% for S, up to 10, and is smaller for a 
more subcooled solid bed. The difference of the 
integral solution and Neumann solution is negligible 
for S, < 0.5. Figure 3b shows the comparison of qo’s 
predicted by the integral and Neumann solutions. The 
maximum error of q. by the integral method is 
bounded by 10% and decreases drastically when the 
subcooling increases. 

The solutions of equations (30), initial conditions for 
the lst-order equations, are trivial, i.e. 

q1 = B, = 6, = 0. (31) 

The zeroth-order solution, 6,, qo, and B, are 
obtained by numerical integration of equations (21), 
(25) and (28a). The implicit difference scheme is used, 
the coefficients of the non-linear terms are evaluated 
by their latest values in iterations. No more than three 

iterations are needed to obtain the convergent results 
for most time steps. Several time steps have been tried. 

The error is bounded by 0.001 for At = 0.01. All results 
presented in the paper are calculated by taking 

At = 0.01. 
The magnitude of natural convection 4 can be 

determined from equation (26) as soon as B, is 
determined. The effect of natural convection on heat 
transfer, a,, ql, and B, can be obtained by a similar 

numerical procedure. However, 8, and B, are elim- 
inated between equations (21b), (26b) and (28) in 
order to remove the singularity at t = 0. Then the 
implicit method is used to integrate equations (28b), 
(32)and (33) to obtain B,, G,,and q1 numerically. After 
several time steps have been tried, we find that the time 
step, At = 0.01, selected for the zeroth-order solution is 
sufficient for the lst-order solutions. 

RESULTS AND DISCUSSION 

There are five dimensionless parameters which affect 
the melting of solid around a hot horizontal cylinder: 
S,, the subcooling factor; S,, the Stefan number; ash 
the ratio of thermal diffusivities of two phases; and 

Pr and Ra, the Prandtl and Rayleigh numbers, 
respectively. 

Ra is defined in equation (3g) and is used as the 

expansion parameter is developing the perturbation 
solution. The perturbation solution, is however, not 
restricted by the value of Ra but would only be applied 
for small Ra, Since the value of Ra can be changed 
only by varying T, - T, when the material of the solid 
bed is selected, Ra can be interpreted as the dimension- 
less overheating degrees of the hot cylinder. Within a 
short period of time after the phase change starts, heat 
conduction is the dominant mode in melting the solid. 

The effects of free convection is proportional to Ra, 
No existing experimental data have the required 

accuracy to compare with the results of the analysis 
within the short while after the melting starts. There- 
fore, the validity of the perturbation solution can only 
be determined by comparing the perturbation solution 
with the exact solution, say a numerical solution, 

which is, unfortunately, unavailable at present. How- 
ever, the upper limit that the perturbation solution is 
valid can be roughly estimated by ruling out the 
possibility of the resolidification along $ = 0” which 
violates the second thermodynamic law. Applying the 
above criterion, the upper limit is found to be 
Ra, e 2000. 

The effects of S,, S,, asl, and Pr are demonstrated 
below. S, = 1, S, = 1, c(~, = 1, and Pr = 1 are selected 
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as the standard case for the convenience of com- 
parison. The value of S is set equal to zero for the data 
presented in Figs. 3-6. 

The subcooling factor, S,, is defined in equation 
(lob). Its physical meaning can be interpreted as the 
ratio of heat conduction inside the solid to that inside 
the melted region. The zeroth-order solutions (heat 
conduction) are given in Fig. 3a for S, = O,OS, 1 and 2, 
respectively. 

The term qo, defined in equation (23a), is the heat 
flux out of the melted region, Its value drops as the 
melted region grows. This is because the conduction 
distance between the surface of the hot cylinder and the 
melting front gradually increases as the melted region 
grows. As expected, subcooling increases the surface 
heat flux. The extent of its influence is more marked at 
lower degrees of subcooling. 

The zeroth-order location of the melting front is 
represented by (2t)1,ZB,. The melting front con- 
tinuously moves away from the hot cylinder as more 
solid melts. The scaling (2t)‘,’ removes most of the 
growth of the melting front with time; therefore, it 
allows adoption of a larger time step in numerical 
integration of equations (28). The melting front moves 
slower at higher degrees of subcooling as more thermal 
energy is consumed in warming the subcooled solid 
bed. 

The penetration depth of heat conduction inside the 
solid is evaluated by (2t)’ /* S,. The reason for scaling 
(2t)‘12 is similar to that of the melting front. The value 
of S, is smaller at lower degrees of subcooling. This is 
because the conduction is suppressed by the con- 
vection which is induced by the moving melting front. 
6, = 0 when there is no subcooling. 

The 1 St-order solution (free convection) is given in 
Fig. 3b. The ma~itude of the free convection is given 
by 4. Subcooling suppresses the free convection since 
there is less melted solid at higher degrees of subcool- 
ing. The values of ql, and 8, vary proportionally 
to 4. 

The Stefan number, Sd, is defined in equation (lob). 
It represents the ratio of the thermal capacity of the 
melted solid to the latent heat. It is expected that there 
is a slower melting at smaller values of S,. In Fig. 4a, 
B,, qo, and 6, are plotted for S,, = 0.1, 1, and 5, 
respectively. With decreasing S, values, one obtains a 
smaller B,. The variation of B, is more profound at 
lower range Sd)s. Since it requires a larger amount of 
thermal energy to melt the solid at a smaller S,, q6 
decreases as S, increases. Also 6, decreases as S, 
decreases due to the fact that the heat conduction 
penetrates farther for a slower moving melting front. 
The effects of the free convection are proportional to 
the melted solid, 4, ql, a,, and B, increase with S, as 
shown in Fig. 4b. 

The ratio of thermal diffusivities of two phases, a,,, 
affects the speed of conducting heat in two different 
phases. Its effect on qO, B,, and 6, are given in Fig. 5a 
for a,[ = OS,1 and 5, respectively. A larger a,, implies a 
faster heat conduction in solid. Consequently, more 
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S, = 1, a,?, = l);(b)Stefannumber effects(lst-order solution 

at Pr = 1, S, = 1, S, = 1). 
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FIG, 6. Prandtl number effects (M-order solution at Pr = 1, 
s, = 1, CL& = 1). 

solid is warmed and thus a larger So at a larger value of 
a,, results. This also induces more melted solid at a 
lower value of q. as shown in Fig. 5a. The Ist-order 
salution (free convection) is proportional to the 
amount of the melted solid. The effects of the free 
convection increase with cc,, as shown in Fig. 5b. 
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FIG. 8. Comparison of azimuthal shear (Pr = 1, S,, = 0.1, 
S, = 0, oL,r = 1). 

Pr only affects the lst-order solution. Its effect is 
shown in Fig. 6 for Pr = 0.01, 0.1, 1, and 10, re- 
spectively. The effects of the free convection are larger 
at a larger value of Pr. The difference between Pr = 1 
and 10 is very small ; therefore, the data corresponding 
to Pr = 10 are excluded. 

The integral solution is compared with the quasi- 

steady solution in Figs. i and 8. In Fig. 8, the locations 
of melted front are plotted at $ = O”, 90”, and 180”, 

respectively; the values of parameters are Ra = 500, 
Pr = 1, a,, = 1, 5, = 0.1, and S, = 0. For S, = 0.1, the 
quasi-steady solution is expected to be very accurate. 

Free convection does not affect the melting process at 
$ = 90” where the integral solutions agree with the 
quasi-steady solution within 1%. At Ic, = o”, the in- 
tegral solution predicts a slower melting rate than that 
of the quasi-steady solution. The difference is bounded 
by 5% at S,(t) = 1. This indicates that the integral 
solution predicts a stronger free-convection effect than 
what the quasi-steady solution predicts. 

The assumed stream function, equation (24), with 
S = 0 gives an equal azimuthal shear at r = 0 and r = 1 

which disagrees with the values predicted by the quasi- 
steady solution. A careful analysis of the quasi-steady 
solution indicates that the azimuthal shear at r = 0 is 

larger than that at r = 1, and their ratio is about 
1 + (r/2)“‘(&). A better comparison of the azimuthal 
shear is achieved by selecting S = C/(2 + C), shown in 

Fig. 8. However, it predicts a slightly stronger free 
convection than that of S = 0 (it is about 1% more). 
The difference of the integral solution at S = C/(2 + C) 
and the quasi-steady solution is slightly larger than 
that for S = 0. Nevertheless, the accuracy of the 
integral solution is well within the range of acceptable 

engineering practice. 
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CHANGEMENT DE PHASE VARIABLE AUTOUR D’UN CYLINDRE HORIZONTAL 

Resume-La methode integrale est appliquee a l’ttude des effets de la convection naturelle sur la fusion dun 
solide autour dun cylindre horizontal chaud. Les rtsultats montrent que le processus de fusion est lie aux 
cinq paramttres adimensionnels : le sous-refroidissement, les nombres de Rayleigh, de Stefan, de Prandtl, et le 
rapport des diffusivites thermiques. Leurs effets sont determines quantitativement. La solution integrale 
montre une precision surprenante quand on la compare avec la solution quasi-statique pour un nombre de 

Stefan faible. 

INSTATIONARER PHASENWECHSEL AN EINEM HORIZONTALEN ZYLINDER 

Zusammenfassung-Mit Hilfe der Integral-Methode werden die Einflusse freier Konvektion auf das 
Schmelzen eines Feststoffes urn einen hei& horizontalen Zylinder untersucht. Die Ergebnisse zeigen, da8 
der Schmelzvorgang durch die folgenden ftinf dimensionslosen Parameter beeintlu:~t wurd: Unterkiihlung 
Rayleigh-, Stefan- und Prandtl-Zahl und das Verhaltnis der Temperaturleit fahigkeiten. Ihre Einfliisse 
werden quantitativ angegeben. Die integrale Losung zeigt ilberraschende Genauigkeit im Vergleich mit der 

quasi-station&en Losung bei kleiner Stefan-Zahl. 
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nEPEXOflHbIE aA3OBbIE M3MEHEHMII Y TOPM30HTAJIbHOl-0 LWIMHflPA 

AHHOTaUw- C "OMOU&40 HHTerpaJlbHOrO MCTOLld HccJlenyeTcS BJlHIIHlie eCTeCTBeHHOti KOHBeKUHH Ha 

WIaBJleHHe TBepnOrO BeUIeCTBa BOKpYr HarpeTOrO rOpU3OHTdnbHOrO UKnHHnpa. nOJly'leHHble jE3yJlb- 

TaTbl CBHneTe,IbCTB)WT 0 TOM.',TO "pOUeCc W,aBJleHHll OnpeI,eJlfiCTCSl CJLeL,,'lo",HMB 6e3pa3MepHbIMki 

napah4eTpami: HenorpeaoM. wicnarm Penen. CTe@aHa H npaumnn H 0momewieM K03~@iuLieHToa 
TCMnepaTypOnpOBOnHOCTH. npOBeneHa KOJIHSCCTBeHHaR OUeHKa pOJH4 ,'Ka-JaHHblX napaMeTpOB. MHTC- 

rpanbHoe pemeHse naeT xopomee comaaeHtie c KBa3mTaukioHapHbE4 peweHseM npe Manbtx 
3Haqetimx wcna Cre+aHa. 
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